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Abstract

Schwartz et al. described an optimization to implement built-in ab-
stract types such as sets and maps with efficient data structures. Their
transformation rests on the discovery of finite universal sets, called bases,
to be used for avoiding data replication and for creating aggregate data
structures that implement associative access by simpler cursor or pointer
access. The SETL implementation used global analysis similar to classical
dataflow for typings and for set inclusion and membership relationships
to determine bases. However, the optimized data structures selected by
this optmization did not include a primitive linked list or array, and all
optimized data structures retained some degree of hashing. Hence, this
heuristic approach only resulted in an expected improvement in perfor-
mance over default implementations. The analysis was complicated by
SETL’s imperative style, weak typing, and low level control structures.
The implemented optimizer was large (about 20,000 lines of SETL source
code) and only partially operational.
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1 INTRODUCTION 2

In this paper we solve a modified form of Schwartz’s data structure
selection problem with a simpler top-down transformation that uses a
first-order parametric subtyping theory for inferring typings and type con-
tainments in a high-level declarative set-theoretic programming language.
Bases are determined from an interpretation of type variables occurring
in type expressions. All remaining analysis to facilitate data structure se-
lection is obtained by local rewriting that compiles these high level typed
specifications into efficient RAM code.

Our method aims for highly efficient data structures without any hash-
ing by simulating a set machine on a pointer machine in real time. We
illustrate our data structure selection method by transforming a concise
set-theoretic specification for attribute closure into low-level Ada code. We
present some preliminary benchmark results that show substantial gains
in efficiency over unoptimized code with hashed default implementations
for sets and maps.

1 Introduction

In his Turing Award address [Tar87] Tarjan said,

“Conventional programming languages force the specification of
too much irrelevant detail, whereas newer very-high-level languages
pose a challenging implementation task that requires much more
work on data structures, algorithmic methods, and their selection.”

and in his Turing Award interview [Fre87] he continued,

“It would be wonderful in the long run to have some kind of
supercompiler that would select, off-the-shelf, the appropriate data
structure to plug in to implement very high-level quasi-algorithmic
specifications. Ultimately, things have to go in this direction.”

In order to increase productivity of the most difficult kinds of software,
such as a high-performance optimizing compiler or a library of computational
geometry code, one must

1. automate major aspects of algorithm design;

2. automate the translation of algorithm specification into reasonably effi-
cient code;

3. ensure that the complex software ultimately designed is correct.

This paper describes some progress in the three preceding areas that combines
ideas from type theory and elementary algorithm and data structure design
theory. We show a novel way in which global type information inferred in a very
high level, declaration free, statically typed first-order specification language
can be transformed into efficient pointer structures that provide concrete and
provably correct implementations in a lower-level language (e.g., one that is
explicitly typed like Ada). The low level code produced by our method is
guaranteed to have (1) all variables initialized before they are used, (2) all
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array accesses in bounds, (3) no dangling references, (4) no dereferences of
nil pointers, (5) no type errors occurring at runtime, and (6) no unintended
side-effects due to pointer aliasing.

Our type transformation rests on the discovery of finite universal sets, called
bases, to be used for avoiding data replication and for creating aggregate data
structures that implement logical associative access operations by simpler cur-
sor or pointer access. Subtypings are inferred from the high level specification
in a first-order subtype theory and are transformed and extended during trans-
formation of the specification to low-level code.

Our method of choosing efficient representations for sets, maps, and other
structured datatypes is part of a first attempt to implement the elementary
algorithm design principles in [Pai89], which stem from the real-time simulation
of an abstract sequential set machine on a uniform cost sequential random
access machine (RAM) [AHU74]. We believe that further development of this
approach could lead to the more ambitious data structure compiler envisioned
by Tarjan.

Section 2 describes the set machine language SETM and data structure
design principles that support the real-time simulation of SETM on a RAM.
In Section 3 we describe a language of set queries, SQ2+, and give several
illustrative examples. Its type model is explained in Section 4. In Section 5
the type model is refined to a model for inferring subtype relations without
changing the class of typable SQ2+expressions. In Section 6 we show how the
type variables occurring in subtype relations for a set query can be interpreted as
universal sets (bases), computed from the input in a unique fashion. Drawing on
earlier work [PH87] we indicate in Section 7 how the base information gained can
be maintained and refined during program transformation to low-level SETM
code. We illustrate base analysis and data structure selection by transforming
an SQ2+specification of the relational attribute closure problem into SETM
code, which is then translated into Ada. Section 8 reports some empirical results
from implementing and comparing several attribute closure implementations
with the one obtained from our data structure selection transformation.

2 Real Time Simulation of a Set Machine on a RAM

In this section we describe the data structure design method that our program
optimization technique seeks to utilize. This method by itself forms the basis
for a theory of naive data representation and could greatly simplify the presen-
tation found in the first seven chapters of Aho, Hopcroft, and Ullman [AHU83].
However, the main goal in this paper is to describe how to incorporate data
structure selection as part of a high level programming language optimizer.

Following [Pai89], we first define a simple set machine (language) SETM
and its associated abstract model of complexity. For each SETM primitive
operation q, we define a worst case asymptotic time bound O(fq) for performing
q on an idealized set machine. Next, we define a transformation T that uses
familiar pointer structures to simulate SETM programs (satisfying sufficient
conditions, defined more precisely later) on a uniform cost sequential RAM
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in real time. Transformation T turns each primitive operation q in the SETM
program into a functionally equivalent sequence of RAM operations whose worst
case asymptotic time (expected time when the sufficient conditions are not met)
and space is the same as the set machine complexity. Of course, transformation
T is not always applicable, but when it is then T (P ) has the same asymptotic
time and space complexity on a RAM as P in the abstract complexity model
of SETM.

Our simulation does not include the cost of reading the input and pre-
conditioning it by transforming it into the data structures used for real-time
simulation of the set operations. As long as all of the input is read in a single
batch operation, multiset discrimination [CP91] can be used to implement pre-
conditioning in linear time, which shows that no “hidden” cost is introduced
by way of “intelligent” — and costly — input operations.

Our set machine language SETM includes conventional unit-space datatypes
such as integer and boolean, fixed length heterogeneous tuples (i.e., records with
fields identified by numerals), and finite homogeneous dynamic sets (of arbitrary
level of nesting), where a set of ordered pairs is regarded as a multi-valued map.
Although our data structure representations can be used to implement tuples
and other datatypes, we will, without loss of generality, restrict our attention
to sets and maps.

It is useful to divide up the primitive SETM operations into the following
four categories:

1. Retrieval operations select an arbitrary value from a set.

2. Initialization operations assign a set to be empty.

3. Addition operations add a new element to a set.

4. Associative access operations locate a given value within a set.

See Table 1 for a list of primitive operations and their defined complexities
grouped according to the categories mentioned above. SETM also contains con-
ventional unit-time boolean and arithmetic operations, and a full repertoire of
control statements that include while-loops, for-loops, conditionals, and goto’s.
We assume that assignment statements are destructive to the original left-hand-
side value.

Real-time simulation of SETM on a uniform cost sequential RAM can-
not always succeed, because arbitrary membership tests x ∈ S for dynamic
sets S stored in linear space require Ω(|S|) comparisons in the worst case
[Knu72]. Such failure could be overcome by rewriting membership tests as
explicit searches (e.g., linear search) that can be simulated in real-time on a
RAM. However, this approach increases the SETM time complexity if the size
of S depends on the size of the input. Another approach, which is similar to
the default implementation in SETL, is to store each set S as a hash table and
be satisfied with an expected time simulation. Our approach is to fall back on
hashing only after real-time simulation fails.

Four basic kinds of data structures are discussed. The simplest one for
implementing sets is a doubly-linked list with pointers to the first and last list
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Operation Definition Complexity
Retrievals

3 x arbitrary choice O(1)
∃x ∈ s boolean valued existential quantifier with side effect O(1)
f(y) x, if f{y} = {x}, undefined otherwise (retrieval of range f) O(1)
(for x ∈ s) execute . . . for each x in set s (searching cost only) O(|s|)

...
end

Initialization
f := {} assign empty map O(1)
s := {} assign empty set O(1)

Addition
s with := x set element addition O(1)

Access
x ∈ s set membership test O(1)
f(x) y, if f{x} = {y}, undefined otherwise (domain f is accessed) O(1)
f{x} {y : [u, y] ∈ f | u = x} (domain f is accessed) O(1)
f(x) := indexed assignment to function (domain f is accessed) O(1)
f{x} := indexed assignment to map (domain f is accessed) O(1)
s less := x set element deletion O(1)

Table 1: SETM Primitives

cell. Each list cell stores an element of the set. This representation, whose
elements are said to be unbased, supports the real-time simulation of retrieval,
addition, and initialization (re-initialization can also be handled by amortizing
garbage collection), but, in general, not access.

The problem with associative access can be illustrated with the following
simple example:

while ∃ x ∈ S loop
. . .
Q less:= x −− delete x from set Q
. . .

end

In the preceding code, if S and Q are both implemented as doubly linked lists,
then retrieving an arbitrary value from S and storing it in x can be done in
O(1) time. However, the subsequent search needed to locate this value within
Q in order to delete it cannot, in general, be achieved in unit time. Only when
the identifiers S and Q are the same, can we always ensure that the associative
access (which in this case is called a self-access) can be executed in unit time.

In order to solve the associative access problem mentioned above, we follow
the approach found in [SSS81] and [PH87], where values common to both sets
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S and Q are stored in one place - in a finite universal set called a base. Conse-
quently the unit-time retrieval from S locates the value within Q as well. More
generally, we use a finite universal set B as the base for S and Q and maintain
the invariant

S ∪Q ⊂ B

To maintain this invariant we represent B and Q as a set of records, each
record containing a B and a Q field. The elements of B are stored in the B
field and serve as the key. Given any record whose B field has the value x,
the Q field in this record stores the undefined value Ω if x does not belong to
Q. Those records whose B field values belong to Q are connected by a doubly
linked list stored within their Q fields. There are also first and last pointers to
the first and last records of the Q field list. Set S is represented as a doubly
linked list of pointers to records whose B fields store the elements of S. We
also use first and last pointers for the S list.

Objects aggregated around the same base are said to be compatible. Hence,
the elements of S and Q are compatible. We say that the elements of S are
weakly based and the elements of Q are strongly based on B.

Weakly and strongly based representations support real-time simulation for
our four basic forms of primitive operations. As in the case of unbased sets,
retrievals from sets whose elements are either weakly or strongly based can be
performed in unit time. When an object x is compatible with the elements
of a set S, then x can be added to S in unit time. When the elements of
S are strongly based, then x can be used as a search argument to perform a
unit-time associative access on S. However, for the same reason as when S is
unbased, when the elements of S are weakly based, then we can only perform
self-access operations in unit time. Initialization (and also re-initialization) for
sets whose elements are weakly based is similar to the unbased case. For sets S
whose elements are strongly based, initialization also takes unit time. However,
in [Pai89] simulating re-initialization for sets S, whose elements are strongly
based, using only list and pointer structures required Ω(|S|) time. Sometimes
this cost can be charged to other operations. However, if we allow an array
implementation, then a unit-time initialization (and re-initialization) can be
achieved using the solution to exercise 2.12 of Aho, Hopcroft, and Ullman’s book
[AHU74] combined with Wiederhold’s transposed column method [Wie83].

It is useful to illustrate the preceding ideas with the simple example of
graph reachability. This problem inputs a set of edges e, represented as a set
of ordered pairs, and a subset w of vertices. The problem is to find the set of
vertices r reachable along paths in e from w. The SETM code just below runs
in worst case time O(|e|) with respect to the complexities given in Table 1.

t3 := {}
(for x ∈ w) −− copy all elements of w to t3

t3 with:= x
end
r := {} −− initialize r to the empty set
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(while ∃a ∈ t3) −− while there is an element a in t3
(for y ∈ e{a}) −− add all new neighbors of a to t3

if y 6∈ r and y 6∈ t3 then
t3 with:= y

end
end
t3 less:= a −− delete a from t3
r with:= a −− add a to r

end

If we let v = w ∪ domain e ∪ range e be our base, then it is easy to prove
the program invariants t3, r ⊆ v and a, x, y ∈ v. Consequently, the SETM code
can be simulated in real-time if the elements of domain e, r, and t3 are strongly
based on v (to handle the three associative access operations), and a, x, y, and
the elements of range e are weakly based on v (to satisfy base compatibility
constraints).

Note that universal sets were important in the preceding example by elimi-
nating replicated values and shortening access paths. This is, of course, a well-
known major efficiency seeking goal in dynamic databases[Dat82, Wie83, Ull82],
where modifying a database in which distinct values may be stored in many files
often results in forced redundant modifications to each of these data files.

In the following pages we will show how analysis for universal sets, inclu-
sion and membership tests, and data structure choice can be achieved by base
analysis of a language of very high level, which draws on fundamental concepts
of type theoretic calculi for subtyping and inheritance. We believe subtype
analysis is a promising novel approach to global data structure optimization.

3 SQ2+: A set query language

The language SQ2+(set queries with fixed points) can be viewed as an exten-
sion of relational calculus with first-class sets, arithmetic, nonrecursive function
definitions and fixed point definitions. In this sense it is similar to database
query languages for nonflat relational databases, but it can also be understood
as extending a declarative variant of the (imperative) programming language
SETL. A complete description of the kernel syntax of SQ2+is given as part of
the type inference system for SQ2+in Appendix B. It is a variant of an earlier
language called SQ+ [PH87, CP89], and can be shown to be Turing-complete
like SQ+ (cf. Theorem 20 in [CP89] ). A partial description of SQ2+is given
in Figure 1.

3.1 Informal semantics of SQ2+

The free variables in an SQ2+query e are the inputs of e, and the result is the1

value of e. The value of e is calculated as in SETL expressions. Expression
1We shall, somewhat carelessly, say “the” value of a query even though there may be several

possible answers; i.e., SQ2+queries are nondeterministic in general.
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e ::= x

| c

| e1 ⊕ e2
| (e1, e2)
| fe

| if e1 then e2 else e3
| fx = e1; e2
| xe1 = e2; e3
| {e1 : x1 ∈ e2, . . . | e3}

x ::= <variable>
c ::= <constant>
f ::= <function symbol>
⊕ ::= <binary operator>

Figure 1: Abstract syntax of SQ2+

fx = e1; e2 defines a nonrecursive auxiliary function f with parameter x and
body e1 that can be called (by value) in e2. If x denotes a pair we may also use
the pattern matching notation f(x1, x2) = e1; e2. A fixed point definition xf =
e1; e2 is evaluated by fixed point iteration: first x is initialized with the value
of f ; next the assignment x := e1 is executed repeatedly until two successive
values of x are equal. This value is then used as the value of x to evaluate e2.
If the subscript f in xf = e1; e2 is missing, we assume a type-specific default
initialization for x: {} for sets, 0 for integers, false for Booleans, and a pair
(d1, d2) of such default values for pairs.

A complete formal structural operational semantics [Set89, chapter 11] for
a kernel of SQ2+is presented in Appendix A using a natural deduction style
[GLT89, chapter 2] inference system. We use assertions of the form e → v : τ ,
which express that SQ2+query e has value v of type τ . Types are expres-
sions generated by the production τ ::= integer | bool | (τ1, τ2) | set(τ) |
t1, t2, . . ., where t1, t2, . . . are type variables. The values contain the truth val-
ues false, true, the integers . . . ,−1, 0, 1 . . ., as well as pairs (v1, v2) and finite
sets {v1, . . . , vk} of such values. The kernel contains a general set iterator con-
struct from which set comprehension and other operations may be defined.
Informally, if M is a set and P is a predicate, then the result r of a set iteration
e′ ⊕ e : x ∈ M | P is computed by initializing r to e′ and executing r := r ⊕ e
for every x in M that satisfies P (e and P may contain free occurrences of x).

SQ2+is nondeterministic since e may have several distinct values as well as
terminating and nonterminating computations for the same input. We shall
not concern ourselves with the potentially problematic interaction of nondeter-
minism and fixed point iteration since it is irrelevant for our purposes. Suffice
it to say that, in general, there may be both terminating and nonterminating
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computations for fixed point iteration. However, if the function denoted by e1
in x = e1; e2 is monotonic with respect to values for x relative to some partial
order ≤ — such as containment, ⊆, for sets — and if the initial value for x is
minimum w.r.t. ≤ then all possible computations of x have the same observable
effect: either they fail to terminate or they return a unique value for x, the least
fixed point of e1 (least w.r.t. ≤). This property has been exploited and refined
in transformations of least/greatest fixed point specifications to low-level set-
theoretic code [PH87, CP89]. Since those transformations are not the subject
of this paper we shall not dwell on them, however.

3.2 Examples of SQ2+queries

To get an idea of the expressiveness and conciseness of SQ2+we present some
illustrative examples.

Example: (Reachable vertices) Given source vertices X and
binary edge relation E, the set X∗ of vertices reachable from X
following paths in E is given by

N(V ) = {y : (x, y) ∈ E | x ∈ V };
X∗ = X ∪N(X∗);
X∗

Note that N is an auxiliary function introduced only for the sake of
clarity. (All such auxiliary functions can, in principle, be eliminated
by unfolding.) For a set of vertices V it computes the set of vertices
one edge away from V . To evaluate the full query, X∗ is initialized
to the empty set. Since N({}) = {}, the value of X∗ after the first
iteration is X, and then, in successive iterations, the neighbors of
the “current” set of reachable vertices are added to X∗ until no more
vertices are added in this way. The final value of X∗ is the answer.

The much more efficient low-level SETM code for reachability, shown at the
end of the previous section, can be derived from this query by fixed point and
finite differencing transformations as implemented in RAPTS [CP89].

Example: (Powerset) To underscore that SQ2+can also manip-
ulate nested sets, unlike relational calculus, here is a specification
of the powerset of a given set S.

P = {{}} ∪ {{x} ∪ T : x ∈ S, T ∈ P};
P

P is initialized to {} and becomes {{}} after one iteration. After
k iterations it contains all subsets of S with at most k elements.
Hence convergence takes |S| iterations.
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The following example specifies the attribute closure of a set of functional
dependencies for a set of attributes X. It is noteworthy since it contains nested
sets and admits a basing that can be found using type inference with type
containments, but not without them (see Sections 4 and 5).

Example: (Attribute closure) A functional dependency is a pair
consisting of a set of attributes Y and an attribute a. In database
theory such a pair expresses that the (values of the) attributes in
Y directly “determine” (the value of) attribute a. Given a set of
such functional dependencies F and a set of attributes X the at-
tribute closure of X under F is the set X+ of attributes whose
values are determined by the values in X (under F ); i.e., they are
in the reflexive-transitive closure of X under F . It can be specified
as follows in SQ2+.

D(S) = {a : (Y, a) ∈ F | Y ⊆ S};
X+ = X ∪D(X+);
X+

D(S) returns the attributes whose values are determined directly (in
one inference step) by S. As in the previous examples, X+ is ini-
tialized to the empty set. Since D({}) = {}, X+ is assigned X after
the first iteration. At each iteration newly determined attributes
are added to X+ until this process converges. The final value of X+

is then returned.

4 A type inference system for SQ2+

SQ2+as presented in Section 3 and Appendix A is a dynamically typed lan-
guage, because alternative results in conditional expressions can have different
types (cf. rules COND-I and COND-II of Appendix A). We shall use type infer-
ence primarily as a tool for program analysis and program transformation. In
this sense we can view a static type inference system as a specialized program
logic, even for dynamically typed languages. Programs that cannot be statically
typed are not subjected to transformations that need such type information to
be applicable. Since such programs are of no interest to us, we shall restrict
ourselves to a statically typed subset of SQ2+queries. Queries in this subset
are said to be well-typed. Well-typed queries have the additional benefit that
they are guaranteed to have no type errors during evaluation.

In this section we present a first-order parametric type inference system for
SQ2+, and in Section 5 we generalize it to a subtype inference system that
includes type containments. We shall see in Section 6 how subtype inference
can be used to find bases.

Our type system is a variant of the Curry/Hindley type discipline for the
λ-calculus (resp. combinatory logic) [Cur69, Hin69]. It is parametric since it
permits the presence of type variables, but it is not polymorphic, since auxiliary
functions cannot have a polymorphic type. We shall see in Section 6 that the
type variables are of particular significance in base analysis.
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The full type inference system for the kernel of SQ2+can be found in Ap-
pendix B. A set A of assumptions of the form x : τ , one for each free variable
x in e, is a type assignment for e. We shall view A as a map on (program)
variables and denote the type in the typing assumption for x with A(x). An
SQ2+query e is (simply) typable (or well-typed) if there is a type expression τ
and a type assignment A for e such that A ` e : τ ; i.e., e : τ is derivable under
A using only the inference rules of Appendix B. In this case we say A ` e : τ is
a typing for e.2

A basic language principle we follow is that exactly those SQ2+queries that
can have a type represent “first-class” values. Since SQ2+is a first-order lan-
guage, (auxiliary) functions are not values, and consequently they cannot have a
type, yet function applications do have types. Consequently we distinguish be-
tween atomic formulas of the form e : τ and f ::< τ, τ ′ >, the latter of which may
be used as (hypothetical) assumptions in typing derivations. Having no func-
tion types guarantees that an SQ2+query f(x) = . . . ; f is not well-typed (and
has no value) since there cannot be a typing for it. However, f(x) = . . . ; f(c)
may be well-typed. Even if e is typable this does not imply that e has a value
since its evaluation may fail to terminate (in which case it has no value).

The type inference system is systematically derived from the operational
semantics of Appendix A with “strict” (abstract) interpretation of conditionals
and function binding. Consequently it is not very difficult to show that the
typing rules are semantically sound. We defer a formal statement of soundness
until Section 5 when type containments are added to our type inference system.

For set comprehension we obtain the typing rule (scheme)

(SETCOMP) M : set(τ)
x : τ ` P : bool
x : τ ` e : τ ′

{e : x ∈M | P} : set(τ ′)

which is derived from the typing rules for set iteration, the empty set and
element insertion since {e : x ∈M | P} : set(τ ′) is defined by {}, e : x ∈M | P
in the kernel language.

In general there may be several derivations of a typing for an SQ2+query e.
A particular derivation can be uniquely represented by annotating the bound
variables of e with type expressions in a typing A ` e : τ .

Example: (A typing derivation for attribute closure) Consider
the attribute closure specification of Section 3:

D(S) = {a : (Y, a) ∈ F | Y ⊆ S};
X+ = X ∪D(X+);
X+

This is a well-typed SQ2+query, and a particular typing derivation
is given by the annotated typing

2Generally, we require that the set of “active” typing assumptions at any point in a proof
forms a type assignment.
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X : set(A)
F : set(set(A), A) (type assignment)
D(S : set(A)) : set(A) = {a : (Y : set(A), a : A) ∈ F | Y ⊆ S};
X+ : set(A) = X ∪D(X+);
X+ : set(A)

In this derivation the attribute closure query has type set(A) for
type assignment {X : set(A), F : set(set(A), A)}. Since A is a free
type variable this holds for any type expression substituted for A.

An SQ2+query e has a principal typing A ` e : τ if for any typing A′ ` e : τ ′

for e there is a substitution S such that S(A) = A′ and S(τ) = τ ′. If they
exist, principal typings are unique modulo renaming of type variables. The
derivation represented in the above example is for the principal typing of the
attribute closure query.

The following theorem is well-known in simple parametric type systems for
functional languages [Cur69, Hin69, DM82].

Theorem 1 (Principal typing property)
Every well-typed SQ2+query has a principal typing.

Theorem 1 follows from the facts that the set of typing derivations for
SQ2+query e can be characterized as the set of unifiers of a pair of type expres-
sions derived from e and that every unifiable pair of type expressions has a most
general unifier. All the constants of SQ2+have a principal typing. Consequently,
principal typings can be computed efficiently by reduction to unification. Of
course, eliminating auxiliary functions by unfolding can result in an exponen-
tial expansion in the length of the program text. Alternatively, if unfolding
auxiliary functions in SQ2+expressions is assumed to be meaning (and type)
preserving, then we would need an extended type system with a Damas/Milner
[Mil78, DM82] style let-polymorphism, which has a DEXPTIME-complete type
inference problem [Mai90, KTU90]. Note that unresolved overloaded function
symbols in other languages may destroy the principal typing property.

5 A subtyping system for SQ2+

Type inference can be employed to collect information about SQ2+queries. The
simple type inference system for SQ2+of the previous section only provides
information about equality of types. For base analysis we are interested in
containments between types since, as we shall see later, type variables can be
interpreted as bases, and one base may be related to another base; e.g., the
elements in a base B may be sets of elements of another base B′. This is
captured by the type containment t ≤ set(t′), where t and t′ are type variables
and ≤ is interpreted as containment between the bases denoting the types t
and set(t′). If there is exactly one type containment for t on the left-hand side,
then t can be implemented as a set of pointers (“addresses”) to memory cells
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containing elements of type set(t′). Pointer dereferencing is then the operational
analogue to invoking the conversion rule for a value of type t to get a value of
type set(t′).

We refine the simple type inference system for SQ2+to a subtype inference
system (c.f. [Mit84, FM88]) by adding propositional formulas of the form τ ≤ τ ′
and the rule schemes presented in Appendix C. The rules specify that type
containments are reflexive, transitive and closed with respect to type construc-
tors set(.) and (., .). The rule (COERCE) connects the type containments to
SQ2+queries: Any SQ2+query of type τ is also of type τ ′ if τ ≤ τ ′ is derivable.

For an arbitrary set C of type containments we define the directed graph
G(C) on the type variables occurring in C such that there is an edge from t to
t′ if and only if there is a constraint t ≤ τ in C and t′ occurs in τ .

A set C of assumptions of the form τ ≤ τ ′ is a type containment set if

1. (type variables on the left of containments) for all τ ≤ τ ′ in C the left-
hand side, τ , is a type variable;

2. (unique coercions) for τ ≤ τ ′, τ ≤ τ ′′ in C it is the case that τ ′ = τ ′′;

3. (acyclic coercions) G(C) is acyclic.

An SQ2+query e is subtypable if there is a type containment set C, a type
assignment A for e, and a type expression τ such that e : τ is derivable under
C,A using only the inference rules of Appendices B and C. In this case we call
C,A ` e : τ a subtyping for e.

Since every simple typing is also a subtyping with an empty type contain-
ment set, every simply typable SQ2+query is also subtypable. Conversely, the
properties of a type containment set guarantee that every type containment set
C has a unifier; i.e., a substitution S such that S(τ) = S(τ ′) for every τ ≤ τ ′ in
C [Ede85]. So every subtyping derivation results in a simple typing derivation
by applying S to the whole derivation. This proves the following theorem.

Theorem 2 (Conservative extension)
An SQ2+query e is typable if and only if it is subtypable.

We represent a subtype derivation for an SQ2+query e by annotating the
bound variables of e with type expressions and indicating type containments
τ ≤ τ ′ (used when applying the COERCE rule of Appendix C) explicitly in
square brackets in a subtyping C,A ` e : τ for e. This identifies a subtype
derivation for e modulo proofs of type containments.

The main value of subtypings should thus be seen as a characterization of
typability while providing more detailed information for well-typed SQ2+queries
than (simple) typings. This additional information can be illustrated by the
following derivation of attribute closure.

Example: (A subtyping derivation for attribute closure) The
attribute closure specification of Section 3 admits the following sub-
typing derivation.
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tX ≤ set(A)
tF ≤ set(I, A)
I ≤ set(A) (type containment set)
X : set(A)
F : set(I, A) (type assignment)
D(S : set(A)) : set(A) =
{a : (Y : I, a : A) ∈ [tF ≤ set(I, A)]F | [I ≤ set(A)]Y ⊆ S};
X+ : set(A) = [tX ≤ set(A)]X ∪D(X+);
X+ : set(A)

Note that this subtyping derivation is different from the simple typ-
ing derivation of Section 4 in that it has additional type containment
assumptions tX ≤ set(A), tF ≤ set(I, A), I ≤ set(A), which are used
once each in the derivation. The interpretations of the type vari-
ables I and A are crucial in the construction of bases for attribute
closure (see Sections 6 and 7).

Just as there are principal typings for well-typed SQ2+queries there is a
corresponding notion for subtypings that has, in an intuitive sense, a maximum
“degree of freedom” for instantiating type variables if we restrict ourselves to
subtyping derivations that are especially suited to a base interpretation. We
say a subtyping derivation is simple if

1. the compatibility rules (PAIR-COMP) and (SET-COMP) are not used,
and

2. the (COERCE) rule is only invoked on those subexpressions that are used
in an assumption for a type inference rule that requires a type expression
with a particular type constructor or constant type for that assumption.

A subtyping is simple if it has a simple derivation. These conditions may sound
obscure at first. But the first condition prevents the use of “induced” type
containments set(t) ≤ set(set(t′)) in coercions; such a coercion would corre-
spond to an exhaustive elementwise dereferencing of a whole set of references.
The second condition makes sure that coercions are only invoked where data
are “used”, not where they are generated. For example, to type expression
{e : x ∈ S | P} we must derive S : set(τ) for some type expression τ and
P : bool, but there is no requirement that e have a type with a particular
form. Consequently, the second requirement says that the (COERCE) rule
may be invoked on subexpressions S and P , but not on e.3

Let C be a type containment set. We write C ` C ′ for an arbitrary collection
C ′ of type containments (not necessarily a type containment set) if C ` τ ≤ τ ′
for every τ ≤ τ ′ in C ′ using the subtype inference rules of Appendix C. We say
an SQ2+query e has a principal simple subtyping C,A ` e : τ if it is a simple

3These two conditions can be encoded by dropping all the type containment inference
rules of Appendix C but rule (REFL) and “building” applications of the (COERCE) rule
into the type inference system of Appendix B. This is done by systematically replacing
every assumption of the form e : set(τ) or e : (τ ′, τ ′′) by e : σ, σ ≤ set(τ), respectively
e : σ, σ ≤ (τ ′, τ ′′), where σ is a new meta-variable.
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subtyping and for any simple subtyping C ′, A′ ` e : τ ′ there is a substitution S
such that A′ = S(A), τ ′ = S(τ) and C ′ ` S(C). If they exist, principal simple
subtypings are unique modulo renaming of type variables.

Theorem 3 (Principal simple subtyping property)
Every well-typed SQ2+query has a principal simple subtyping.

The proof of this theorem is by reduction to type constraint systems4 and is
outside the scope of this article.

Finally, we show that subtypings (whether simple or not) and thus also
typings are sound: they give valid information about the semantics of SQ2+.
To express this we first introduce some basic notions. Let U be a universe
containing all “defined” values of SQ2+queries. A type valuation T is a mapping
from type variables to subsets of U . T can be extended in a canonical fashion
to a mapping from type expressions to subsets of U by defining T [τ ] = {v :
(∃e) e→ v : τ}. In particular, we have

T [integer] = {. . . ,−1, 0, 1, 2, . . .}
T [bool] = {false, true}
T [(τ, τ ′)] = T [τ ]× T [τ ′]
T [set(τ)] = {S : S ⊆ T [τ ] | |S| <∞}

An environment ρ is a set of value assumptions of the form x→ v : τ for the free
variables of an SQ2+query e. The values bound to the free variables represent
a particular input for e. We write ρ(x) for the value bound to x in ρ.

We say ρ, T satisfy C,A if for all x : τ in A there is x → v : τ ′ in ρ such
that v ∈ T [τ ], and for all τ ≤ τ ′ in C we have T [τ ] ⊆ T [τ ′]. Notice that every
pair C,A is satisfiable if C is a type containment set.

We write C,A |= e : τ if for all ρ, T satisfying C,A we have that v ∈ T [τ ]
whenever e→ v : τ ′ is derivable from ρ in the operational semantics of SQ2+(see
Appendix A). The soundness of subtypings w.r.t. the operational semantics of
SQ2+is easily formulated now.

Theorem 4 (Semantic soundness)
If C,A ` e : τ then C,A |= e : τ .

6 A base interpretation of subtypings

In this section we show that the type variables occurring in a subtyping C,A `
e : τ can be interpreted in a unique fashion as finite sets of values constructed
from the input values for the SQ2+query e. These sets, constructed exclusively
from the inputs (i.e., values of global variables) of a query, will serve as our
bases, and exactly those variables in e whose types have an occurrence of a
particular type variable t will be represented by aggregation around the base

4See [Wan87, FM88, Hen88] for a sample of reductions of type inference to type constraint
systems and [Hen91b, Hen91a] for reductions very similar to the one necessary to prove this
theorem.
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computed for t. Principal simple subtypings are the “best” subtypings for base
interpretation since they provide the greatest “degree of freedom” for interpret-
ing type variables without admitting costly compound dereferencing. Note,
however, that the results of this section hold for any subtyping, not just simple
subtypings.

For a well-typed SQ2+query e the type containment set C and the type
assignment A of a subtyping C,A ` e : τ for e can be interpreted as input
requirements that must be satisfied for an input environment: An environment
ρ is legal for C,A if there exists a type valuation T such that ρ, T satisfies C,A;
we say that such a T is a type valuation for ρ (w.r.t. C,A). A type valuation
T is at least as specific as T ′, T ≤ T ′, if T [t] ⊆ T ′[t] for every type variable t.

Theorem 5 Let C be a type containment set and A be a type assignment. For
every legal environment ρ there is a (unique) most specific type valuation T such
that ρ, T satisfies C,A. Furthermore, T maps every type variable to a finite set
and for every type variable occurring in C there is an SQ2+query et such that
ρ ` et → T [t] : set(t) in the operational semantics of SQ2+(see Appendix A).

This theorem says that given a subtyping C,A ` e : τ for an SQ2+query e,
we can compute unique ‘minimal’ bases, which are expressible as SQ2+queries
with the same free variables as e. Informally, this is justified by two claims.
First, because type assignment A only has assumptions for free variables, we
cannot use our type and subtype inference rules of Appendices B and C to derive
type assertions e : t, where t is a type variable and SQ2+expression e computes
a created value (meaning that e does not retrieve an input value). For example,
we cannot derive S ∩ T : t or x2 : t, where t is a type variable. Consequently,
T [t] is defined in terms of input values. Second, type assignment A and type
containment set C are associated with consistent set theoretic constraints that
can be satisfied constructively with a unique minimal interpretation T [t] as a
finite set.

This theorem can be proved as follows. Let ρ be legal. By definition, T is
a type valuation for ρ w.r.t. C,A if and only if

1. for every x : τ in A we have {ρ(x)} ⊆ T [τ ] and

2. for every τ ≤ τ ′ in C we have T [τ ] ⊆ T [τ ].

Note that we have the equivalences

1. S ⊆ T [set(τ)]⇔ (
⋃
S) ⊆ T [τ ],

2. S′ ⊆ T [(τ ′, τ ′′)]⇔ (domain S ⊆ T [τ ′] ∧ range S ⊆ T [τ ′′]) and

3. (S ⊆ T [t] ∧ S′ ⊆ T [t])⇔ S ∪ S′ ⊆ T [t].

where
⋃
S denotes the union of all element sets of S, domainS′ is the domain

of the set of pairs S′, and range S′ is the range of S′. Using them we can
rewrite the initial constraints into an equivalent set of constraints such that all
constraints are of the form S ≤ T [t] for some type variable t and there is at
most one constraint of the form S ≤ T [t] for every type variable t. We call S
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the lower bound for t. If we draw an edge from every type variable in S to t for
every S ≤ T [t] in the final constraint set it is easy to see that the resulting graph
on type variables is just G(C) as defined in Section 5, which is guaranteed to be
acyclic. Thus the constraint set has a unique minimal solution T0. In particular,
we define T0 as follows: For every source t in G(C), we define T0[t] = {} if t has
no lower bound, and T0[t] = S if S is the lower bound for t. For all other type
variables t′ in G(C) we define, in topological order, T0[t′] = S[T0/T ] where S
is the lower bound for t′ and S[T0/T ] says that the formal occurrence of T is
to be interpreted by T0. Note that T0[t] is finite and can be expressed as an
SQ2+query in terms of the (program) variables occurring in A since

⋃
,domain

and range are definable in SQ2+.
This proof sketch can be illustrated using the attribute closure example once

again.

Example: (Base calculation for attribute closure query) We
shall present the base interpretation for the following (simple) sub-
typing for the attribute closure query.

I ≤ set(A) (type containment set)
X : set(A)
F : set(I, A) (type assignment)
D(S : set(A)) : set(A) =
{a : (Y : I, a : A) ∈ F | [I ≤ set(A)]Y ⊆ S};
X+ : set(A) = X ∪D(X+);
X+ : set(A)

The initial constraints for a type valuation T are

T [I] ⊆ T [set(A)]
{ρ(X)} ⊆ T [set(A)]
{ρ(F )} ⊆ T [set(I, A)]

Because of S ⊆ T [set(τ)]⇔ (
⋃
S) ⊂ T [τ ] this is equivalent to⋃

T [I] ⊆ T [A]
ρ(X) ⊆ T [A]
ρ(F ) ⊆ T [(I, A)]

Using S′ ⊆ T [(τ ′, τ ′′)] ⇔ (domain S ⊆ T [τ ′] ∧ range S ⊆ T [τ ′′])
this is, in turn, equivalent to⋃

T [I] ⊆ T [A]
ρ(X) ⊆ T [A]

domain ρ(F ) ⊆ T [I]
range ρ(F ) ⊆ T [A]

Finally, applying (S ⊆ T [t] ∧ S′ ⊆ T [t]) ⇔ S ∪ S′ ⊆ T [t] twice we
arrive at

(
⋃
T [I]) ∪ ρ(X) ∪ range ρ(F ) ⊆ T [A]

domain ρ(F ) ⊆ T [I]
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Note that G(C) contains an edge from I to A for this example. So
we calculate the most specific type valuation by first defining T0[I]
and then T0[A].

T0[I] = domain ρ(F )
T0[A] = (

⋃
T0[I]) ∪ ρ(X) ∪ range ρ(F )

= (
⋃

domain ρ(F )) ∪ ρ(X) ∪ range ρ(F )

For given ρ we say T0[I] is the base for I and T0[A] is the base for
A.

7 Transforming SQ2+queries into set machine code

Our subtyping theory provides the formal underpinnings for an SQ2+compiler
implemented by Cai and Paige in the RAPTS transformational programming
system. The compiler has three phases. First, type inference finds the principal
simple subtyping C,A ` e : τ for a given SQ2+program e. Next, program e is
transformed into SETM code e′ in which variables in common to both e and e′

have types defined by A, and new variables in e′ have types derived from A in
a straightforward way; i.e., C,A∪A′ ` e′ : τ , where A′ is a type assignment for
all variables of e′ not occurring in e. Finally, the SETM code is transformed
into an efficient C program by the real-time simulation technique described in
Section 2.

In this section we will sketch the RAPTS implementation (except that Ada
will be the target language instead of C), and provide links with the subtyping
theory crucial to the real-time-simulation. Within RAPTS subtype inference is
implemented using an inductive rule system similar to the natural semantics of
MENTOR/TYPOL [DGHKL84, Kah87]. However, while MENTOR/TYPOL
uses a logic programming paradigm with a PROLOG back-end, RAPTS uses
an expert system technology based on a home-grown variant of the RETE algo-
rithm [For82] supported by highly efficient bottom-up linear pattern matching
[CPT90].

Fragments of two rule groups, called transcripts, that infer principal simple
subtypings for SQ2+programs in RAPTS are shown below. The first transcript
computes the type containment set subtype for an SQ2+program e; i.e. if t ≤ τ ,
then subtype(t, τ). This transcript also computes the type assignment typev for
e, where assertion x : τ is represented by typev(x, τ).

The second transcript uses typev and subtype to compute another type as-
signment type for the principal typing of an SQ2+program e. The computation
fails with an occurs check only when e is not typable. When the computation
succeeds, we can get the principal typing of e by restricting type to the free
variables of e.

Each rule in the transcripts below is of the form

if cond then action where binding

where cond is a set of conjuncts separated by commas, and action is a collection
of actions to be performed if all of the conjuncts in cond are true. These rules are
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applied to a given program P . When one of the conjuncts is of the form match
e, then the rule will only be used when pattern e matches a subexpression q of P .
Matching binds pattern variables of e to subtrees of q. The other conjuncts may
result in further bindings. The binding clause contains subclauses of the form
x = newvar, which binds pattern variable x to a newly generated identifier.
If all of the conditions in cond hold, then the resulting substitution is used to
instantiate the actions. Actions of the form enter(reln, [x1,..,xk]) enter k-tuple
[x1,...,xk] into relation reln. However, if the transcript declares that reln needs
unification, then each time a tuple [x1,...,xk] is entered into reln, the system
will check whether there exists a tuple [x1’, ...,xk’] in reln such that x1’ = x1.
If not, [x1,...,xk] is added. Otherwise, x2,...,xk will be unified with x2’,...,xk’.
If the unification succeeds, a substitution will be performed using the most
general unifier of x2’,...,xk’ and x2,...,xk. Otherwise, a type error is reported,
and the input SQ2+expression is not subtypable.

transcript subtyping;
declare: insertions of subtype need unification;
begin /* the rules */
/* initialization */

if match e then
enter(typev, [e, t]), /* enter the tuple [e, t] to the relation typev */
where t = newvar. /* generate a new type variable t */

/* set union */
if match x ∪ y, typev(x, t1), typev(y, t2), typev(x ∪ y, t3) then

enter(subtype, [t1, set(m)]), enter(subtype, [t2, set(m)]),
enter(typev, [x ∪ y, set(m)]), where m = newvar.

/* set comprehension */
if match {e1: x ∈ e2 | e3}, typev(e1, t1), typev(e2, t2), typev(e3, t3),

typev(x, t4), typev({e1: x ∈ e2 | e3}, t) then
enter(subtype, [t2, set(t4)]), enter(subtype, [t3, bool]),
enter(typev, [{e1: x ∈ e2 | e3}, set(t1)]);

/* fixed point iterations */
if match xe1 = e2; e3, typev(x, t0), typev(e1, t1), typev(e2, t2)

typev(e3, t3 ), typev(xe1 = e2; e3, t4) then
enter(typev, [x, t1]), enter(typev, [x, t2]),
enter(typev, [xe1 = e2; e3, t3])

end;
transcript typing;
declare: insertions of type need unification;
external: typev, subtype; /* transcript basing must be executed first */
begin

if typev(e, t) then
enter(type, [e, t]).

/* unify s with t */
if type(e, t), subtype(t, s) then

enter(type, [e, s]);
end;
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We can show that if type is computed successfully by the transcripts above,
then relation subtype of the first transcript is a type containment set of a
principal simple subtyping of the input SQ2+program e. Let C be the type
containment set represented by the relation subtype. Let G(C) be the graph
defined in Section 5. If G(C) has a cycle, then the built-in unification procedure
will report a type error when computing the relation type. The declaration that
subtype needs unification guarantees the unique coercion condition. It is also
not so difficult to show by induction that each time when a tuple [x, y] is entered
into relation subtype, x is always a variable, and y is either a type constant or
a nonnested structure (e.g., set(m), where m is a variable).

Our SQ2+compiler uses a set theoretic fixed point transformation [CP89]
and a naive form of finite differencing [PK82] to transform SQ2+programs into
SETM code (see Section 2), which corresponds closely to the operational se-
mantics given in the kernel language for SQ2+. The base information inferred
for the SQ2+queries is extended to base information for the compiled low-level
SETM code. For simplicity’s sake we shall demonstrate this process informally
below for naive SETM code generation.

Example: (Transformation of attribute closure) The principal
simple subtyping derivation of Section 5 for the SQ2+attribute clo-
sure query can be transformed along with the query itself. Specif-
ically, for the type containment set {I ≤ set(A)} and the type as-
signment {X : set(A), F : set(I, A)} the fixed point transformation
detailed in [CP89] turns the attribute closure query (with D un-
folded in the code) into

S : set(A) := {};
(while ∃(z : A) ∈ (X ∪ {a : (Y, a) ∈ F | Y ⊆ S} − S))

S with := z;
end while;

Finite differencing, in its simplest form, keeps the values of subex-
pressions e in separate variables T and maintains invariants T = e.
Thus, the above code can be transformed into typed SETL,

S := {};
maintain

T1 : set(A) = [I ≤ set(A)]Y − S
T2 : set(I) = {Y : (Y : I) ∈ domain F | T1 = {}}
T3 : set(A) = {a : (Y : I, a : A) ∈ F | Y ∈ T2}
T4 : set(A) = X ∪ T3
T5 : set(A) = T4− S

in
(while ∃z ∈ T5 )

S with := z;
end while;

end maintain;
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where the scope of each invariant T = e is defined by the place where
variable T is used. This program is then transformed by naive finite
differencing into the typed SETM code appearing in Appendix D.
Subtypes for bound variables appearing in Appendix D are derived
easily from the subtypes of the variables shown above.

Below is a fragment of the rewriting rules implemented in RAPTS for com-
piling SQ2+queries into SETM code. More efficient code can be generated using
the finite differencing transformations described in [PH87]. Recall that these
rules are applied to a given program P , and that a rule can be applied when all
of the conjuncts in its cond clause are satisfied. When one of these conjuncts
is of the form match e, and when e matches a subexpression q of P , then an
action of the form rewrite(w) is performed by replacing q with w.

Within the rules shown below, we only annotate the newly created SQ2+ex-
pressions. The type information of other subexpressions are assumed unchanged.
In addition to the first rewriting rule below, we only supply the rules for
fixed point iteration, set comprehension and set unions. The rules for other
SQ2+constructs are either similar or trivial.

/* This rewrite rule replaces the outermost SQ2+query e by the result
of gencode */

if match e, type(e,t) then
rewrite(

gen(e, n: t); /* evaluate e and store value in n */
print(n);),

where n = newvar.
/* fixed point iteration for set type */

if match gen(Xe1 = e2; e3, n), type(Xe1,set(t)) then
rewrite(

gen(e1, X);
L: gen(e2 - X, w:);

if exists z in w then
X with:= z;
goto L;

end;
gen(e3, n);),

enter(type,[e2 - X: set(t)]), enter(type,[w,set(t)]), enter(type,[z,t]),
where m = newvar, z = newvar, w = newvar, L = newvar.

/* set comprehension */
if match gen({e1: x ∈ e2 | e3}, n), type(e1,t1), type(e2,set(t2)),

type(e3,bool) then
rewrite(

n := {};
gen(e2, m);
(for x in m)

gen(e3, p);
if p then
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gen(e2, q);
n with:= q;

end;
end;),

enter(type,[m,set(t2)]),enter(type,[p,bool]), enter(type,[q,t1]),
where m = newvar, p = newvar, q = newvar.

/* set union */
if match gen(x ∪ y, n), type(x ∪ y,set(t)), not is-var(x) then

/* x is not a variable */
rewrite(

gen(x, m);
gen(m ∪ y, n);),

enter(type,[m,set(t)]),
where m = newvar.

if match gen(x ∪ y, n), type(x ∪ y, set(t)), not is-var(y) then
rewrite(

gen(y, m);
gen(x ∪ m, n);),

enter(type,[m,set(t)]),
where m = newvar.

if match gen(x ∪ y: set(t), n), type(x ∪ y, set(t)), is-var(x),
is-var(y) then /* both x and y are variables */
rewrite(

n := {};
(for z: t in x)

n with:= z;
end;
(for z in y)

n with:= z;
end;),

where z = newvar.

In [Pai89] sufficient semantic conditions were given to guarantee a real-time
simulation of SETM code on a RAM. Three kinds of conditions are mentioned.
First are the conditions that guarantee a copy/value semantics with an efficient
pointer implementation; i.e.,

• If S and T are sets, then assignments S := T and S with := T are
implemented by copying a pointer to the value of T.

• Element addition S with := x and deletion S less := x are destructive to
the body of S. Just before either of these operations is performed, there
must be no live pointers to the value of S.

Second, there are several base conditions. Consider an ‘object flow graph’
(OFG) that abstracts potential interactions between values in a SETM program
at runtime. For each retrieval operation in an SETM program, where an object
x is retrieved from a set s, we draw an edge s∃ → x; for each SETM operation
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where x is added to set s, we draw an edge x+ → s; if x is used to perform
an associative access on s, then we draw x ∈→ s. The OFG is related to but
simpler than Schwartz’s value flow analysis [Sch75a, Sch75b]. Given an object
flow graph for a typed SETM program, we require the base conditions given
below (where t is a type variable).

• For each variable s : {t} and each OFG edge x+→ s, we have x : t.

• For each variable x : t and each OFG edge s∃ → x, we have s : {t}.

• For each OFG edge x ∈→ s, we have x : t and s : set(t).

Finally, we assume that just before every element addition S with := x, x
does not belong to S. Likewise, just before every element deletion S less := x,
x belongs to S. If all these conditions can be met then the SETM code can be
simulated in real-time on a RAM in accordance with the complexities given in
Table 1.

The fixed point transformation and the naive finite difference transforma-
tion implemented (according to operational semantics of SQ2+) in RAPTS and
illustrated here guarantee all but the base conditions. We can say the same for
the more efficient finite differencing transformation described in [PH87]. These
transformations will also guarantee the base conditions for SETM code gen-
erated from an SQ2+program e if the types of the subexpressions of e satisfy
certain conditions. If B is a type variable then several of these conditions are
listed below:

• S ∪ T : set(B)

• {e : x ∈ S|k} : set(B)

• xf = e1; e2 : set(B), where e1 is set-valued

• x : B ∈ S : set(B)

If these easily checkable typing conditions are satisfied for an SQ2+program,
then real-time simulation is achievable using the following simple heuristic for
selecting weakly or strongly based representations. (1) All sets undergoing
associative access are strongly based. (2) All other sets that must satisfy base
compatibility conditions are weakly based. (3) All other sets are unbased.

This heuristic has been used to obtain the final representations for all vari-
ables occurring in the SETM program in Appendix D. The results are listed
at the bottom of the code in Appendix D. The SETM code, together with the
subtypings, is finally translated into pointer structures and pointer operations
in a suitably low-level language. In our example this is Ada, shown in Appendix
E. For reasons of efficiency the code uses arrays as well as lists. Note that the
Ada code expects a slightly different input format from the SETM code. It first
computes the two bases, I and A, and initializes all variables. Then it simulates
every SETM step using the chosen data structures.
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Attributes (N) 50 100 200 400 500
Input size 40 155 482 1640 2504
SETL 0.32 2.26 9.76 67.70 123.58
SETL2 0.1 0.5 2.3 16.6 31.4
Ada1 0.36 1.35 6.29
Ada2 0.08 0.18 0.90 4.43 8.65

Table 2: Attribute closure run-times for random dependencies

8 Empirical results

We tested 4 versions of the attribute closure algorithm:

• The SETL code obtained from the SQ2+specification by naive finite dif-
ferencing given in Appendix D.

• The same procedure transcribed into SETL2, a new implementation of
SETL written in C.

• Ada1, a direct transcription of the same procedure into Ada, using the
library of set primitives written by Doberkat and Gutenbeil [DG87].

• Ada2, a hand-coded version written in Ada and given in Appendix E,
which uses the subtypes inferred by our algorithm as described in Ap-
pendix D. Both Ada versions were compiled with the Alsys compiler.

We ran the four versions on different input sizes and characteristics. The
runs were made on an empty SUN3/160 server, running SunOS 4.1. The results
of our experiments are summarized in Tables 2 and 3. All run-time figures are
in seconds, corresponding to clock time in Ada and the time function in SETL.
The times for SETL2 are user times obtained from the Unix time function. Sys-
tem time usually adds 10%, so that its inclusion does not affect the comparisons
significantly. Table 2 gives the results for randomly generated sets of attribute
dependencies with the following characteristics. Let N be the number of at-
tributes. Then the initial set has cardinality c = N/10; there are c additional
sets of dependencies that are satisfied by the initial set, and an additional c
dependency sets are constructed at random. Table 3 gives the results for dense
sets of dependencies, where all N attributes are reachable from an initial set of
size N/10.

The results of both experiments are consistent:

• The SETL2 version is about 3-4 times faster than SETL.

• Ada1 is unstable and loops or raises storage error for the larger inputs.

• Ada2 is 4–5 times faster than SETL2.



www.manaraa.com

8 EMPIRICAL RESULTS 25

Attributes (N) 50 100 200 250 300
Input size 176 645 2108 3006 4289
SETL 7.4 41.3 254.3 467.6 725.9
SETL2 1.8 10.0 57.7 104.2 169.0
Ada1 16.6 56.2 868.7
Ada2 0.58 2.07 11.09 24.09 36.80

Table 3: Attribute closure run-times for “dense” dependencies

The run-time environments of these four versions are sufficiently different
to make their analysis delicate. Neither Ada version has a garbage collector,
but the Essen library uses allocators systematically, without any storage recla-
mation (explicit deallocation in the Ada1 code could be added with little effort,
leading to much better memory usage). Both SETL versions are interpreted,
while the Ada versions are compiled.

Most of the code for Ada1 consists of subprogram calls to the run-time
library, so that it mimics closely the interpreted code of the SETL versions.
As a result, the relative performance of SETL and Ada1 reflects the relative
sophistication of their respective run-time libraries. The data structures of the
Essen library are simpler than those of SETL (e.g., hash-tables are of fixed size
and contain separate sub-tables for various element types) and thus perform
worse than those of the SETL library for any but the smallest inputs. For
programs with very dynamic and short-lived set values, the Essen run-time
support, remarkable a coding effort as it is, suffers from its choice of suboptimal
data structures and its absence of integration with a storage manager.

The original purpose of subtypes and based data structures was to minimize
associative access to sets and mappings, by replacing associative operations
(hash-table retrievals) with faster indexing and dereferencing operations. It is
nevertheless clear that the gains in efficiency achieved by subtypes are more
far-reaching.

• Operations on based structures are simpler than those on standard sets
and maps, and code for these operations can be emitted in-line, both
because code for the operations themselves is shorter, and because run-
time inspection of type-tags is unnecessary. Thus the use of subtypes
makes true compilation of the code possible.

• The SQ2+specification guarantees that the base sets are fully determined
from input, so that bases can be allocated quasi-statically (for example,
as local variables to an outer block). Similarly, strongly-based sets and
maps are stored as attributes of base elements, and generate no additional
storage allocation actions; only weakly based sets and maps need to be
dynamically allocated. By minimizing storage management activity, sub-
types suppress the largest overhead associated with modifications of the
store in high-level languages.
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For all programs that manipulate sets and maps, the two advantages of true
compilation and minimal heap usage will provide a better-than-constant factor
improvement in run-time performance. This is comparable to the improvements
quoted for compiled LISP. What is notable is that this improvement is obtained
for programs with set constructs, whose semantic level is much higher than list-
based programs, and for which conventional optimization techniques alone do
not yield better run-time performance.
One final note: conventional optimization techniques still play a vital role in our
system. For example, the transformation for SQ2+to SETL depends on sub-
stantial live-dead analysis and dead-code elimination. The Ada1 version would
display better performance and memory utilization if explicit deallocation were
used for dead values (all set temporaries in the main loop) but automatic gen-
eration of deallocation operations is a variant of copy optimization performed
on the SETL code. Based representations allow us to make best use of these
conventional optimization methods, and in so doing they capture aspects of
manual coding that have escaped so far any attempts at mechanization.

9 Conclusion

Our approach to automatic data structure selection differs from other work in
significant ways. Earlier work in the Artificial Intelligence community consid-
ered a wider assortment of data structures than us, but they relied on weaker
heuristic methods drawing on expert systems technology (e.g., [Low74, Bar79,
DG87, Rov77, Kan81]). For the most part, those methods were also more lo-
calized in their focus on successive refinement of a data structure for a single
variable. The work that comes closest to ours is the SETL data structure
selection and aggregation[Sch75c, SSS81, DGC+79, FSS75]. We have been mo-
tivated by an interest in overcoming some of the practical shortcomings in the
design of the SETL optimizer, and in improving the theoretical underpinnings
of data structure selection, especially with regard to complexity guarantees.
The implementation of top-down subtype analysis and data structure selection
is ongoing as part of the RAPTS program transformation project. Another
recent ongoing implementation effort is reported in [FHR90].

The theoretical work that comes closest to our simulation approach is due
to Ben-Amram and Galil [BAG91], who give both upper and lower bounds for
simulating any RAM (with array processing) program of time t and space s on
a Pointer Machine in θ(tlogs) time. Their RAM and Pointer Machine models
are similar to the ones discussed in [Pai89], where sufficient conditions were
presented for simulating a RAM on a Pointer Machine in real-time. That real-
time simulation technique is similar to the set machine simulation technique
just discussed.

The work reported here is preliminary, but highly encouraging. We are cur-
rently working on several improvements and applications. The data structure
design method is being generalized by adding more primitive operations (as are
found in Chapter 1 of Tarjan’s book[Tar87]) into SETM. Dynamic bases and
runtime data structure reorganization are also being investigated.
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We have only provided some meta rules for data structure inference, and
provided only two transformations, namely fixed point and finite differencing
transformations.
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A Structural operational semantics of SQ2+

We provide a formal semantics for a kernel of SQ2+. SQ2+constructs and
operators outside the kernel can be syntactically defined in terms of the kernel
primitives.

The primitive set constructors are the empty set, {}, and element addi-
tion, written M,x where M is a set and x an element. To capture the “data”
nondeterminism of sets the element insertion operator “,” satisfies the equality
S, x, y = S, y, x for all S, x, y. Since the semantics of element insertion guaran-
tees that no value is inserted twice into a set we can identify the formal value
terms {}, v1, . . . , vk with finite sets and write the more familiar {v1, . . . , vk}.

Much of the expressive power of set queries is provided by the generic set
iterator construct e′ ⊕ e : x ∈ M | P . Here e, e′,M and P are expressions, x is
an identifier, and ⊕ is a (predefined) binary operator or a (user-defined) binary
function. If P = true then “| P” may be omitted.

Using set iteration the set cardinality operator can be defined by |M | =
0 + 1 : x ∈ M | true. Similarly, M ∪ N is defined by M,x : x ∈ N . Finally,
set comprehension is {}, e : x ∈ M | P , which we write {e : x ∈ M | P} in
concrete syntax. Set comprehension with two nested iterators {e : x ∈ M,y ∈
N | P} where x may occur free in N is defined by {} ∪ {e : y ∈ N | P} :
x ∈ M ; set comprehensions with an arbitrary number of nested iterators may
be defined analogously. It is not possible to define set iteration in terms of set
comprehension and set reduction since set iteration does not eliminate duplicate
values computed for e before applying the operator ⊕ in e′⊕ e : x ∈M | P (see
rules (SETITER-II) and (SETITER-III) below), but set comprehension does.

The operational semantics of our language is given using syntax-directed
(structural) inference rules for formal statements e → v : τ , which relate ex-
pressions to their values. Since we do not treat functions as values we also
provide formal (closure) binding statements f ::< x, e >, which may be used
as (hypothetical) assumptions in typing derivations. An expression e has value
v if there is a natural deduction style proof of e → v using the (substitution
instances of the) following axioms and inference rules.
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semantic specification QUERIES is

(FUNC-EVAL) f ::< x : τ, e′ : τ ′ >
e→ v : τ
x→ v : τ ` e′ → v′ : τ ′

fe→ v′ : τ ′

(FUNC-BIND) f ::< x : τ, e′ : τ ′ >` e→ v : τ ′′

fx = e′; e→ v : τ ′′

(FIXDEF-I) f → v : τ
x→ v : τ ` e→ v : τ
x→ v : τ ` e′ → v′ : τ ′

xf = e; e′ → v′ : τ ′

(FIXDEF-II) f → v : τ
x→ v : τ ` e→ v′ : τ
y → v′ ` xy = e; e′ → v′′ : τ ′

xf = e; e′ → v′′ : τ ′

semantic specification BOOL is

(TRUE) true→ true : bool

(FALSE) false→ false : bool

(COND-I) e→ true : bool
e′ → v′ : τ
if e then e′ else e′′ → v′ : τ

(COND-II) e→ false : bool
e′′ → v′′ : τ
if e then e′ else e′′ → v′′ : τ

semantic specification INTEGER is
using BOOL
. . .
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semantic specification PAIR is

(PAIR) e→ v : τ
e′ → v′ : τ ′

(e, e′)→ (v, v′) : (τ, τ ′)

(PROJ-I) e→ (v, v′) : (τ, τ ′)
e.1→ v : τ

(PROJ-II) e→ (v, v′) : (τ, τ ′)
e.2→ v′ : τ ′

semantic specification SET is
using BOOL
with (∀S, x, y) S, x, y = S, y, x

(EMPTYSET) {} → {} : set(τ)

(INSERT-I) M → S : set(τ)
e→ v : τ
S = T, v for some T
M with e→ S : set(τ)

(INSERT-II) M → S : set(τ)
e→ v : τ
S 6= T, v for all T
M with e→ S, v : set(τ)

(SETITER-I) e′ → v′ : τ ′

M → {} : set(τ)
e′ ⊕ e : x ∈M | P → v′ : τ ′

(SETITER-II) e′ → v′ : τ ′

M → S,w : set(τ)
x→ w : τ ` P → true : bool
x→ w : τ ` e→ v : τ ′

x′ → v′ : τ ′, x′′ → v : τ ′ ` x′ ⊕ x′′ → v′′ : τ ′

y → v′′ : τ ′, z → S : set(τ) ` y ⊕ e : x ∈ z | P → v′′′ : τ ′

e′ ⊕ e : x ∈M | P → v′′′ : τ ′

(SETITER-III) e′ → v′ : τ ′

M → S,w : set(τ)
x→ w : τ ` P → false : bool
y → v′ : τ ′, z → S : set(τ) ` y ⊕ e : x ∈ z | P → v′′ : τ ′

e′ ⊕ e : x ∈M | P → v′′ : τ ′
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B Type inference system for SQ2+

Following is our natural deduction style type inference system that defines a
strongly typed subset of SQ2+. The typing rules are for the kernel of SQ2+in
Appendix A. Constructs outside the kernel are typed by typing their defini-
tions in terms of the kernel language, which results in derived typing rules not
presented here.

type specification BOOL is

(TRUE) true : bool

(FALSE) false : bool

(COND) e : bool
e′ : τ
e′′ : τ
if e then e′ else e′′ : τ

type specification INTEGER is
using BOOL
. . .

type specification PAIR is

(PAIR) e : τ
e′ : τ ′

(e, e′) : (τ, τ ′)

(PROJ-I) e : (τ, τ ′)
e.1 : τ

(PROJ-II) e : (τ, τ ′)
e.2 : τ ′
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type specification SET is
using BOOL
with (∀S, x, y) S, x, y = S, y, x

(EMPTYSET) {} : set(τ)

(INSERT) M : set(τ)
e : τ
M, e : set(τ)

(SETITER) e′ : τ ′

M : set(τ)
x : τ ` P : bool
x : τ ` e : τ ′

x′ : τ ′, x′′ : τ ′ ` x′ ⊕ x′′ : τ ′
e′ ⊕ e : x ∈M | P : τ ′

type specification QUERIES is

(FUNC-EVAL) f ::< τ, τ ′ >
e : τ
fe : τ ′

(FUNC-BIND) f ::< τ, τ ′ >` e : τ ′′

x : τ ` e′ : τ ′
fx = e′; e : τ ′′

(FIXDEF) f : τ
x : τ ` e : τ
x : τ ` e′ : τ ′
xf = e; e′ : τ ′

C Subtype inference system for SQ2+

The subtype inference system for SQ2+adds the following axiom and rule schemes
to the type inference system of Appendix B.
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type specification COERCIONS is

(REFL) τ ≤ τ

(TRANS) τ ≤ τ ′
τ ′ ≤ τ ′′
τ ≤ τ ′′

(PAIR-COMP) τ1 ≤ τ ′1
τ2 ≤ τ ′2
(τ1, τ2) ≤ (τ ′1, τ

′
2)

(SET-COMP) τ ≤ τ ′
set(τ) ≤ set(τ ′)

(COERCE) e : τ
τ ≤ τ ′
e : τ ′

D SETM code for attribute closure

program attribute closure ;
read(X);
read(f) ;
S := {};
start: T2 := {}; –maintain T2

(for y: [I ¡ {A}] ∈ domain f)
T1 := {}; –maintain T1
( for z: A ∈ y)

if z 6∈ S then
T1 with:= z;

end;
end;
if T1 = {} then

T2 with:= y;
end;

end;
T3 := {}; –maintain T3
(for w: I ∈ T2)

( for u: A ∈ F{w})
if u 6∈ T3 then

T3 with:= u;
end;

end;
end;
T4 := {}; –maintain T4
(for v: A ∈ X)
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T4 with:= v;
end;
(for v: A ∈ T3)

if v 6∈ T4 then
T4 with:= v;

end;
end;
T5 := {}; –maintain T5
(for a: A ∈ T4)

if a 6∈ S then
T5 with:= a;

end;
end;
if ∃ z ∈ T5 | true then

S with:= z;
goto start;

end if;
print(’closure: ’, S) ;

end program attribute closure ;

The type assignments for all variables in this code are listed below. The
subscripts indicate whether access (a), retrieval (r), or addition (+) are per-
formed on them. Consequently, S, T3 and T4 will be strongly based on A. In
fact, since there is no retrieval operation performed on S it can be implemented
as a bit field associated with the base A. The domain of F and T2 will be
weakly based on I. Finally, the image sets of F under every domain point, X,
T1, and T5 will be weakly based on A.

bases
I = domain F
A = (

⋃
domain F ) ∪X ∪ range F

based variables
S : set(A)a+

T4 : set(A)ar+

v : A
X : set(A)r

T2 : set(I)r+
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y : I
z : A
F : set(I, A)r,r

T1 : set(A)r+

w : I
u : A
T3 : set(A)ar+

T5 : set(A)r+

a : A

E Ada code for attribute closure

with text io; use text io;
with lists;

−− a generic package that provides the functions:
−− insert, delete, and new list.

procedure attribute closure is
total attributes: constant := 50;
total relations : constant := 50;

type A index is range 0 .. total attributes;
type I index is range 0 .. total relations;
null index: constant A index := 0 ;
last index: constant A index := A index’last ; −− to mark end of lists
package A lists is new lists(A index) ; use A lists ;
package I lists is new lists(I index) ; use I lists ;
subtype A list is A lists.list ;
subtype I list is I lists.list ;
−− S is strongly based and only used for membership and insertion: it
−− is encoded as a boolean attached to each base value.
−− T3 and T4 are strongly based and used for membership, insertion, and
−− iteration. They can be encoded by a boolean value and a link, or else
−− (at the price of some extra coding) by a circular list and a pointer to
−− the first element. The code below uses a list with two special pointers:
−− null index to designate the absence of an element, and last index, used
−− only on the last element of the list.

type A Rec is record
S: boolean ; −− strongly based subset.
T3, T4 : A index ; −− strongly based subsets, with iteration.

end record ;
A base: array(A index) of A Rec;
type I Rec is record

I: A list ; −− domain,
F: A list ; −− and range of function f,

end record ;
I Base: array(I index) of I Rec;
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X, T1, T5: A list;
T2: I list;
T4, T3: A index; −− to hold first element of set.
u, v, y, z: A list; −− bound variables in iterators.
a, v1: A index ; −− ditto.
w: I list ;
package int io is new integer io(A index) ; use int io ;
function get A list return A list is

−− To initialize X and F. Input is a list of indices, without duplicates
l: A list ;
e: A index ;

begin
l:= new list ;
get(e) ;
while e /= null index loop

insert(e, l);
get(e) ;

end loop ;
return l ;

end get A list ;
begin

X := get A list;
−− Input F, as list of pairs of lists, and build I BASE.
for i in I index loop

I BASE(i).I := get A list ;
exit when I BASE(i).I = null;
I BASE(i).F := get A list ;

end loop ;

−− S := {} S is strongly based.
for i in A BASE’range loop A BASE(i).S := false; end loop;

<<start>>
−− T4 := {}
for i in A BASE’range loop

A BASE(i).T4 := null index;
end loop;
T4 := last index ;

v := X ;
while v /= null loop

A BASE(v.index).T4 := T4 ;
T4 := v.index;
v := v.next ;

end loop ;
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T2 := new list ;
for i in I index loop

y := I BASE(i).I;
T1 := new list ;
z := y ;
while z /= null loop

if not A BASE(z.index).S then insert(z.index, T1) ; end if ;
z := z.next ;

end loop ;
if T1 = null then insert(i, T2) ; end if ;

end loop;

−− Initialize T3.
for i in A BASE’range loop

A BASE(i).T3 := null index;
end loop;

T3 := last index ;

w := T2 ;
while w /= null loop

u := I BASE(w.index).F ;
while u /= null loop

if A BASE(u.index).T3 = null index then
A BASE(u.index).T3 := T3 ;

−− chain element to front of T3.
T3 := u.index;
end if ;

u := u.next;
end loop ;
w := w.next ;

end loop ;

v1 := T3 ;
while v1 /= last index loop

if A BASE(v1).T4 = null index then
−− chain element to T4.

A BASE(v1).T4 := T4 ;
T4 := v1;
end if ;
v1 := A BASE(v1).T3 ;

−− iterate through T3.
end loop;

T5 := new list ;
a := T4;
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while a /= last index loop
if not A BASE(a).S then insert(a, T5) ; end if ;
a := A BASE(a).T4 ;

end loop ;

if T5 /= null then
−− insert first element in S

A BASE(T5.index).S := true ; goto start ;
end if;
−− Display result.
for i in A BASE’range loop

if A BASE(i).S then put(i) ; put(” ”) ; end if ;
end loop;

end attribute closure;


